Translation of Weighted Voting Concepts to the Boolean Domain: The Case of the Banzhaf Index | Chapter 10 | Advances in Mathematics and Computer Science Vol. 2

This chapter is a tutorial exposition on how to translate concepts of voting systems to the Boolean domain, and consequently on how to use Boolean tools in the computation of a prominent index of voting powers, viz., the Banzhaf voting index. We discuss Boolean representations for yes-no voting systems, in general, and for weighted voting systems, in particular. Our main observation is that non-minimal winning coalitions are related to minimal ones via partial-order structures and also as particular subordinate loops that cover the all-1 cell in the Karnaugh map. We review the method of computing the total Banzhaf indices by the Conventional Karnaugh Map (CKM). Then we extend this method to handle larger problems via the Variable-Entered Karnaugh Map (VEKM). The map methods are demonstrated by two classical weighted voting systems.

Author(s) Details

Ali Muhammad Ali Rushdi
Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, P.O.Box 80204, Jeddah 21589, Saudi Arabia.

Omar Mohammed Ba-Rukab
Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, P.O.Box 344, Rabigh 21911, Saudi Arabia.

Read full article: http://bp.bookpi.org/index.php/bpi/catalog/view/69/831/638-1
View Volume: https://doi.org/10.9734/bpi/amacs/v2

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s