A Derivation of the Kerr–Newman Metric Using Ellipsoid Coordinate Transformation | Chapter 06 | Theory and Applications of Physical Science Vol. 1

The Kerr–Newman metric describes a special rotating charged mass and is the most general solution for the asymptotically stable “black-hole” solution in the Einstein–Maxwell equations in general relativity. Because these are nonlinear partial differential equations, it is difficult to find an exact analytical solution other than spherical symmetry. This study presented a new derivation of the Kerr–Newman metric which is an extension of the authors’ previous research. Using the ellipsoid symmetry of space-time in the Kerr metric, an ellipsoidal coordinate transformation method was performed and the Kerr–Newman metric was more intuitively obtained. The relation with this method and Newman–Janis algorithm was discussed.

Author(s) Details

Dr. Yu-Ching, Chou
Health 101 Clinic, 1F., No.97, Guling St., Zhongzheng District, Taipei City 100, Taiwan and Archilife Research Foundation, 2F.-1, No.3, Ln. 137, Changchun Rd., Zhongshan District, Taipei City 104, Taiwan.

View Volume: http://bp.bookpi.org/index.php/bpi/catalog/book/98


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s