Aim: With the acquisition of the Kerma-Area-Product (KAP) meter, patient organ doses were estimated in order to analyze patient dose trends due to fluoroscopy exposure in two fluoroscopy centers. This gave the opportunity to report patient doses due to fluoroscopy exposure using the appropriate dosimetry procedure.
Study Design: Cross-sectional study.
Place and Duration of Study: Two fluoroscopy machines located in Greater Accra Region of Ghana in Korle-Bu Teaching Hospital and Cocoa Clinic. The duration of the study was within six and a half months.
Methodology: 182 adult patients undergoing barium enema, barium meal, barium swallow, myelogram, hysterosalpingography and urethrogram examinations collectively were investigated (98 men, 84 women, age group 20-81 years). Radiation dose was measured using KAP meter. The KAP readings, patient’s data and other relevant information from the control console were used to estimate organ doses using Monte Carlo base program (PCXMC version 2.0). Quality control tests were performed on the two fluoroscopy machines before the start of the study to ensure that they were performing self-consistent with national and international requirement.
Results: The ovaries, breast, thyroid and testes recorded high doses for barium enema, barium meal, barium swallow and retrograde urethrogram examination respectively. Mean KAP values measured were 23.57±1.78 Gy.cm2, 18.08±2.08 Gy.cm2, 5.99±0.62 Gy.cm2, 8.53±0.67 Gy.cm2, 2.13±0.15 Gy.cm2 and 1.47±0.07 Gy.cm2 for barium enema, barium meal, barium swallow, myelogram, hysterosalpingography and urethrogram examinations respectively.
Conclusion: The recorded KAP values for all the examinations were compatible with ICRP values but in some cases where a little bit lower. The KAP values were also higher than NRPBs’ values except for barium swallow examination which was comparable. Due to the varying patient doses in the institutions, standard protocol for fluoroscopy procedure is recommended.
Author(s) Details
E. Gyasi
Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG80, Legon, Accra, Ghana.
Prof. C. Schandorf
Department of Nuclear Safety and Security, School of Nuclear and Allied Sciences, University of Ghana, P.O. Box AE 1, Atomic, Accra, Ghana.
Prof. M. Boadu
Department of Nuclear Safety and Security, School of Nuclear and Allied Sciences, University of Ghana, P.O. Box AE 1, Atomic, Accra, Ghana and Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, P.O. Box LG80, Legon, Accra, Ghana.
Dr. P. K. Gyekye
Department of Nuclear Safety and Security, School of Nuclear and Allied Sciences, University of Ghana, P.O. Box AE 1, Atomic, Accra, Ghana and Nuclear Regulatory Authority, Ghana Atomic Energy Commission, P.O. Box LG80, Legon, Accra, Ghana.
View Book: http://bp.bookpi.org/index.php/bpi/catalog/book/115