Total Petroleum Hydrocarbons (TPHs) and Polycyclic Aromatic Hydrocarbons (PAHs) Removal in Spent Synthetic-based Drilling Mud Using Organic Fertilizer | Chapter 07 | Emerging Issues in Science and Technology Vol. 2

Treatment and disposal of spent (used) drilling mud have become an important environmental challenge in the oil and gas industry. Total Petroleum Hydrocarbons (TPHs) and Polycyclic Aromatic Hydrocarbons (PAHs) constitute the major contaminants in spent drilling mud. In this study, five spent synthetic-based drilling mud samples were collected from five oil fields in the Niger Delta. Samples collected on day 0 were analyzed for TPHs and PAHs. Concentrations higher than the permissible regulatory limits were recorded. The efficacy of urea fertilizer in the remediation of TPH-and PAH-impacted mud was investigated. Six sub-samples and six control sub-samples were tested bi-weekly for 12 weeks with 20 g, 25 g, and 30 g doses of urea fertilizer per 20 L of spent mud for each of the five samples representing each individual oil field (marked A through E). Removal of TPHs and PAHs with urea fertilizer treatment proved to be fast and efficient. In 6 weeks, with a dose of 1.5 g/L, over 98% removal of TPHs was recorded, and more than 94% of PAHs, and in 12 weeks, more than 99.5% removal was recorded for both. The residual levels of TPHs and PAHs met Department of Petroleum Resources (DPR: Nigeria) and US EPA limits for land disposal. Mathematical models with a goodness of fit (R2) of 0.999, were developed to predict the rate of the degradation processes.

Author(s) Details

Felix Obinduka
Centre for Occupational Health, Safety and Environment, University of Port Harcourt, Nigeria.

Ify L. Nwaogazie
Department of Civil and Environmental Engineering, University of Port Harcourt, Nigeria.

Onyewuchi Akaranta
Centre of Excellence, Centre for Oilfield Chemicals Research, University of Port Harcourt, Port Harcourt, Nigeria.

Gideon O. Abu
Department of Microbiology, University of Port Harcourt, Port Harcourt, Nigeria.

View Book: http://bp.bookpi.org/index.php/bpi/catalog/book/121

Biotreatment of Crude Oil Contaminated Soil | Chapter 12 | Theory and Applications of Microbiology and Biotechnology Vol. 1

Biodegradation of hydrocarbons by microorganisms represents one of the primary mechanisms by which petroleum and other hydrogen pollutants are eliminated from the environment. This work was carried out on the effect of microorganisms on the biotreatment of oil in crude oil contaminated soil.

Microorganisms were isolated from two experimental soil samples contaminated with Bonny Crude and normal uncontaminated soil as a control over a period of seven months. The microbial as well as the physico-chemical parameters of the soil samples were all analyzed using standard methods. Changes in total petroleum hydrocarbon level were measured appropriately. Treatments used were the microbial isolates.

Forty-four microorganisms were isolated from the contaminated soils and identified as species of Pseudomonas (7), Flavobacterium (6), Bacillus (8), Proteus (4), Klebsiella (1), Pencillium (5), Aspergillus (7), Fusarium (3), Trichypton (2) and Neurospora (1). Ten of the forty-four isolates had ability to degrade crude oil in the laboratory. On contamination a value of 1.0X105 cfu/g in microbial counts were obtained followed by a subsequent increase in population levels after a period of 2months with a value of 1.0X106 cfu/g. Oil application to the soil resulted in an increase in total petroleum hydrocarbon from 0.31 ppm to 5.53 ppm; organic matter from 0.41% to 7.34%; available phosphorus from 1.75 ppm to 2.84 ppm. The treatment measures all showed progressive decrease in oil concentration in the soil. Mixture of bacterial and fungal isolates as a treatment measure proved to be more favourable above all others, it brought the concentration from 5.53 ppm to 0.31 ppm after a period of 5 weeks of treatment, which is same value with the normal soil (uncontaminated).

Species of Pseudomonas, Bacillus, Flavobacterium, Proteus, Klebsiella, Penicillium, Aspergillus, Fusarium, Trichyphyton and Neurospora had potential for the degradation of bonny crude oil. They could therefore be employed in environmental cleanup of petroleum spill site.

Author(s) Details

B. M. Popoola
Ajayi Crowther University, Oyo, Oyo State, Nigeria.

A. A. Olanbiwonninu
Ajayi Crowther University, Oyo, Oyo State, Nigeria.

View Books: http://bp.bookpi.org/index.php/bpi/catalog/book/95

Optimization of Biodegradation of Phenol in a Refinery Effluent Treatment Facility | Chapter 11 | Recent Advances in Biological Research Vol. 5

Background: Regulatory agencies in Nigeria and all over the world demand that refinery wastewater (RWW) meet stipulated regulatory limits before discharge into the environment. Biodegradation of toxic hydrocarbon constituents of these effluents, such as phenol, has remained a challenge with regards to compliance with regulatory requirements.

Aims: This study investigated the effect of micronutrients and macronutrients on the biodegradation of phenol in RWW.

Methods: The micronutrients used in the study were CoSO4, MnSO4, ZnSO4 and CuSO4 while the macronutrients comprised urea and NPK. Range-finding and optimum concentration tests were performed for each of the nutrients. The experiment was carried out in a 3L Erlenmeyer’s flask incubated in a rotary shaker under experimentally determined optimum cultural conditions, using a fractional factorial design. Phenol concentration (mg/ml) was monitored daily throughout the experiment using spectrophotometric method.

Results: The result obtained from the study revealed that a combination of CoSO4, MnSO4 and NPK was most efficient in enhancing the degradation of phenol in the RWW. After three days of incubation, phenol concentration of 141.99mg/ml was reduced to 0.1mg/ml. This value is lower than the phenol concentration of 0.5mg/ml recommended for discharge of RWW into the environment. The degradation model derived from the study can be represented with the equation, y = 8.4998e-2.302x and R² = 0.961. 

Conclusion: This study has revealed that the combination of CoSO4, MnSO4 and NPK can efficiently enhance phenol degradation in RWW for effectual compliance with the regulatory discharge limit. This study has also demonstrated the positive effect of micronutrients and macronutrients on the biodegradation of refinery effluent. Amongst all the nutrients screened, the combination of NPK, MnSO4 and CaSO4 was most efficient in enhancing the biodegradation of phenol in RWW. This could be as a result of preferential assimilation of these specific nutrients by the microbial culture involved in the degradation. Operators of petroleum refineries in Nigeria should employ the synergistic effect of micronutrients and macronutrients in stimulating the microbial culture for optimal biodegradation of phenol in RWW as identified in this research.

Author(s) Details

Ifeyinwa Veronica Agu
Research and Development Division, Nigerian National Petroleum Corporation (NNPC), Eleme Petrochemical (Life Camp), P.M.B. 5373, Port Harcourt, Nigeria and Department of Microbiology, Faculty of Sciences, University of Port Harcourt, Choba, P.M.B. 5323, Port Harcourt, Rivers State, Nigeria.

Dr.  Abiye Anthony Ibiene
Department of Microbiology, Faculty of Sciences, University of Port Harcourt, Choba, P.M.B. 5323, Port Harcourt, Rivers State, Nigeria.

Professor Gideon Chijioke Okpokwasili
Department of Microbiology, Faculty of Sciences, University of Port Harcourt, Choba, P.M.B. 5323, Port Harcourt, Rivers State, Nigeria.

Read full article: http://bp.bookpi.org/index.php/bpi/catalog/view/68/805/623-1
View Volume: https://doi.org/10.9734/bpi/rabr/v5